Entity NER-specific Parameters
The table below describes the entity parameters you can set for NER when creating a Lexicon (an entity index).
Parameter |
Description |
Default value |
---|---|---|
NLU.NER.EntityIndex.AlternativeCalculationForProbability |
An alternative method for computing the probability of an entity, that favors exact matches within the index. Note: This parameter is available in DRUID 5.2 and higher and has the default value "false".
Important! In DRUID 5.8 and higher, this parameter provides an alternative method for computing the probability of an entity that favors partial matches within the index. The default value is "false".
|
false |
NLU.NER.EntityIndexType |
The Lexicon (entity index) type:
|
Inverted |
Experimental Parameters
Parameter |
Description |
Default value |
---|---|---|
NLU.NER.EntityIndex.UseForClassification |
Multiplies the training phrases on the flow (within the model) by the number of entity records (elements) in the Lexicon (indexed entity). Important! Because the parameter's default value is too high, we strongly recommend you to use this parameter only together with NLU.NER.Classification.MaxNoOfUterancesFromEntityValuesForNer.
|
50 |
NLU.NER.Classification.MaxNoOfUterancesFromEntityValuesForNer |
To ensure that the training model is balanced, set this parameter to 3 up to 5. The value will apply per utterances per entity record. Note: This parameter is available in DRUID 5.17.
For example, there is a Lexicon for colors, which has 7 elements and there are 3 training phrases on the flow. 21 training phrases will be added to the model; a training phrase per element in the Lexicon. |
|
NLU.NER.EntityIndex.RescaleProbs |
Set the parameter to true to increase the extraction score which ensures that NER identifies more entity candidates. The parameters increases the extraction score as follows:
Example: In entity index there is a list of smartphones. The user asks for the price of an iPhone. The list of smartphones contains a long list of iPhone models, some with long names. Because the extraction score for long iPhone model names decreases, we set the NLU.NER.EntityIndex.RescaleProbs parameter to true to ensure that long iPhone names are also included in the list of candidates identified by NER. Note: This parameter is available in DRUID 5.18.
|